Determining Optimal Update Period for Minimizing Inconsistency in Multi-server Distributed Virtual Environments

Li Yusen, Wentong Cai Presented by Stephen John Turner PDCC, SCE Nanyang Technological University, Singapore

Overview

- Introduction
- System Model
- Problem Definition
- Optimization Method
- Performance Evaluation
- Conclusion and Future Work

Introduction to the Research Problem

virtual world

• Distributed Virtual Environment

node, client/user, player

avatar

object/entity

Introduction to the Research Problem

- Fundamental goal
 - Create a common and consistent representation of the virtual world among all users
 - Any state change of an entity in the virtual world should be disseminated to all users who require it in a timely manner
- Challenges
 - Network latency
 - Resource limitations as the number of users increases (e.g., MMOG)
 - Computational power
 - Network capacity

Introduction to the Research Problem

- Research Objective
 - Derive state update schedules for improving consistency in multi-server DVEs with network capacity constraints
- Contributions
 - Time-space inconsistency is used to evaluate the total inconsistency of an multi-server DVE
 - The problem of minimizing total inconsistency is formulated as an Inequality Constrained Problem (ICP)
 - Interior point method is used to solve the problem

System Model

The virtual world is partitioned into several fixed regions

System Model

NANYANG TECHNOLOGICAL UNIVERSITY

System Model

- State Update Schema
 - Client first sends the operation on an entity to the server maintaining this entity
 - Server executes the operation and disseminates new states to all interested clients for updating the replicas
 - For a replica, if its target server and contact server are the same, target server directly disseminates state update to the replica
 - If its target server and contact server are different, target server first sends update to contact server, contact server forwards to replica

- Time-space inconsistency
 - $-\Delta(t)$: spatial difference between a replica and its source entity
 - Time-space inconsistency over $[t_b, t_e]$

- Objective
 - To minimize total time-space inconsistency over all replicas with a set of servers with limited network capacity
- Assumptions
 - For each replica, assume after the replica receives a position update, the difference $\Delta(t)$ grows following an increasing function $\delta(\cdot)$, $\Delta(t) = \delta(t-(tlast+d))$
 - Configurations such as world partition, client assignment, server side bandwidth, etc. remain unchanged over a period

• Theorem

- In multi-server DVEs, for any replica, given a fixed number of updates allowed in a period at the target server, these updates should be disseminated periodically over this period for minimizing time-space inconsistency
- To minimize total time-space inconsistency over all replicas over a period with a set of servers with limited network bandwidth, we just need to determine the optimal update period of each replica

Problem Definition (cont.)

Notations

- -NS the number of servers in the DVE
- $-S_i$ the ith server in the DVE
- -NR the number of replicas in the DVE
- $-NR^{i}$ the number of replicas whose target server is S_{i}
- $-NR_{j}^{i}$ the number of replicas whose target server is S_{i} and contact server is S_{j}
- r_k the kth replica in the DVE
- $-e(r_k)$ the entity which r_k is replicating, i.e., source entity of r_k
- $-T(r_k)$ the target server id of r_k
- $-C(r_k)$ the contact server id of r_k

Problem Definition (cont.)

- Notations
 - $-R_i^T$ the set of replicas whose target server is S_i
 - $-R_i^C$ the set of replicas whose contact server is S_i
 - $-d_i$ the transmission delay of position update of replica r_i from target server to r_i
 - *a* bandwidth consumption for disseminating a position update
 - b andwidth consumption for receiving and forwarding a position update
 - $-c_i$ the network capacity of S_i
 - $-f_r$ the update frame length of each server
 - p_k update period of replica r_k

Objective function to minimize: total time-space inconsistency over all replicas over period T

subject to

Network capacity constraint for each server $f(p) = \sum_{i=1}^{NR} \frac{T}{p_i} \int_0^{p_i} \delta_i(t) dt,$ (5) $g_i(p) \le 0, \quad i = 1, ..., NS,$ (6) $p = [p_1, ..., p_{NR}]$ and $g_i(p)$ is defined as $g_i(p) = a \cdot \left(\sum_j \frac{T}{p_j}\right) + b \cdot \left(\sum_k \frac{T}{p_k}\right) - c_i \cdot \frac{T}{f_r},$ (7)where $j \in \{j | 1 \le j \le NR, r_j \in R_i^T\}$ and $k \in \{k | 1 \le k \le NR, r_k \in R_i^C\}$.

Bandwidth consumption on disseminating position updates for the replicas whose target server is this server

Bandwidth consumption on forwarding

Convex Optimization

- Problem Transformation
 - Let $q_i = \frac{1}{p_i}$, the problem is converted to minimize

$$f(q) = \sum_{i=1}^{NR} T \cdot q_i \cdot \int_0^{\frac{1}{q_i}} \delta_i(t) dt, \qquad (8)$$

subject to

$$g_i(q) \le 0, \quad i = 1, ..., NS,$$
(9)

 $\boldsymbol{q} = [q_1,...,q_{\scriptscriptstyle NR}]$ and $g_i(\boldsymbol{q})$ is denoted as

$$g_i(q) = a \cdot \left(\sum_j T \cdot q_j\right) + b \cdot \left(\sum_k T \cdot q_k\right) - c_i \cdot \frac{T}{f_r}, \quad (10)$$

Convex Property

$$\nabla_{qq}^2 f(q) \ge 0.$$

Convex Optimization

- Interior Point Method
 - The basic idea is to approximate the original problem to the following problem

minimize
$$f(q) + \sum_{i=1}^{NS} \left[-\left(\frac{1}{\alpha}\right) log(-g_i(q)) \right],$$
 (15)

- $-\alpha$ is a parameter that sets the accuracy of the approximation
- Solution - Define $L(q) = f(q) + \sum_{i=1}^{NS} \left[-\left(\frac{1}{\alpha}\right) log(-g_i(q)) \right],$ (16)
 - L(q) is a convex function and if $\nabla_q L(q^*) = 0$ holds, q^* is a global minimum.
 - Gradient Descent Method

Convex Optimization

- Gradient Descent Method
 - Iterative Algorithm

$$q^{(k+1)} = q^{(k)} - t^{(k)} \cdot \nabla L(q^{(k)})$$

- t is a constant value, can be different for each iterative step
- Values Need to Know

$$- \frac{\partial L(q)}{\partial q_i} = \frac{\partial f(q)}{\partial q_i} - \sum_{i=1}^{NS} \left[\frac{1}{\alpha} \cdot \frac{1}{g_i(q)} \cdot \frac{\partial (g_i(q))}{\partial q_i} \right]$$
$$- \frac{\partial f(q)}{\partial q_i} = T \cdot \left(\int_0^{\frac{1}{q_i}} \delta_i(t) dt - (\frac{1}{q_i}) \cdot \delta_i(\frac{1}{q_i}) \right)$$
$$- \delta_i(\frac{1}{q_i^k}) \text{ and } \int_0^{1/q_i^k} \delta_i(t) dt \text{ need to be estimated}$$

Performance Evaluation

• Experimental parameters

Parameter	Default Value
DVE Dimension Number of Servers	5000x5000 (distance units) ² 25
Number of Regions	100
Number of Clients/avatars	1500
AOI Size	500x500
Average Network Latency	100ms
Variance of Latency Frame Length a, b Entity Moving Speed Network Capacity	0.95 0.025s 1 unit [0.1, 10] distance units/frame [5, 300] units

Converge Speed of Iterative Algorithm

Most of variables converge after 3000 iterative steps

• Impact of α in the Interior Point Approximation

parameter	values
Network latency	100ms
Network capacity	50
Т	60s
Server Number	25

Larger $\boldsymbol{\alpha}$ makes more accurate, but more difficult to converge

• Impact of Network Capacity

Fig. 7. Impact of Network Capacity

parameter	values
Network latency	100ms
т	60s
Server number	25

• Impact of Network Latency

Fig. 8. Impact of Network Latency

• Impact of Inter-server Communication

Fig. 9. Impact of Inter-server Communication

parameter	values
Network latency	100ms
Network capacity	50
Т	60s

Conclusion and Future Work

Conclusion

- Study the update scheduling issues in multi-server DVEs with limited network bandwidth
- Formulate and solve the problem for an ideal situation where configurations keep unchanged
- Future Work
 - Update schedules in practical systems

The End

